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ABSTRACT 

This thesis presents a method for predicting the radiated sound power of 

structures that combines numerical models of structural finite element and 

acoustic boundary element analyses. This method involves the generation and 

validation of a finite element model of an unbaffled, rectangular, flat plate 

through the use of material properties determined by matching numerical and 

experimental results and experimentally determined forced response 

characteristics such as modal frequencies, geometry, damping and generalized 

force. The finite element model is shown to represent accurately the mode 

shapes and resonance frequencies of the actual plate. Once a match was 

achieved between the forced vibration response of the numerical and physical 

models, the one third octave radiation efficiencies of the finite element model 

were calculated by means of a lumped acoustic parameter method and compared 

to experimental measurements conducted in a large water tank. The results of 

these comparisons show that this approach is capable of predicting the acoustic 

characteristics of the unbaffled, rectangular plate well. 
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Chapter 1 

INTRODUCTION 

1.1 Research Motivation 

Through the past several decades, the acoustic radiation from flat plates 

has received considerable attention and investigation, particularly in underwater 

applications. The focus of these studies has been on the class of radiating panels 

which are effectively baffled. However, there has been little attention devoted to 

radiation from unbaffled panels where the fluid on opposite sides of the 

vibrating surface can interact at the edges. This interaction reduces their 

radiation efficiencies by converting monopole radiation to dipole radiation at the 

edges. The goal of this thesis is to determine if a numerical finite element model 

combined with an acoustic radiation model can be used to predict correctly the 

acoustic characteristics of an unbaffled structure, since the discontinuities at the 

boundaries pose formidable computational challenges. 

This thesis is an investigation of the radiation efficiency of an unbaffled, 

rectangular, flat plate submerged in water. We have evaluated a numerical 

structural acoustic model and compared results from it with experimentally 

generated data. This model uses a combination of vibration levels derived from a 



finite element analysis and acoustic radiation characteristics as predicted by the 

method of superposition which was developed by Koopmann et al. [15]. 

1.2 Review of Related Research 

Several different approaches have been used to investigate the sound 

power radiated from unbaffled, finite plates [1,3,12,24,25]. Of these, there have 

been relatively few realistic experimental verifications attempted. To the 

author's knowledge, there are no published studies which predict the sound 

power from an unbaffled plate using a boundary element acoustic approach. 

An iterative technique was developed by Williams [24] and Williams and 

Maynard [25] which numerically evaluated the acoustic pressure and velocity on 

and near unbaffled, finite, thin plates vibrating in air. Their technique was based 

on Rayleigh's integral formula and its inverse. These formulas were written in 

their angular spectrum form so that a Fast Fourier Transform (FFT) algorithm 

could be used to evaluate them. The results presented were those of an 

unbaffled disk; however their solutions suffered from lack of convergence at 

lower frequencies. 

Harbold [12] used non-intrusive velocity measurements to predict 

acoustic radiation from unbaffled, vibrating plates. He developed an iterative 

method to predict the acoustic velocity field near the plate surface. To obtain a 

measure of surface acoustic intensity, a pressure distribution near the plate 
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surface was assumed and used with the measured velocity field on the plate 

surface. Using a blocked impedance approach, he assumed a zero velocity field 

near the plate surface and then they computed the velocity field on the surface of 

the plate derived from the pressure field over the entire plane of the plate. This 

was compared to the measured velocity distribution, and like Williams and 

Maynard, FFT-based equations were used to compute the acoustic pressure and 

intensity fields. 

A theoretical approach to predict the sound power radiated from baffled 

and unbaffled two-dimensional strips with a prescribed surface motion was 

determined by Blake [3] through the use of the Wiener-Hopf technique. The 

Wiener-Hopf technique is used for cases in which the width of the strip is greater 

than the half-wavelength of the sound in the fluid and for which the wavelength 

of motion in the strip is smaller than an acoustic wavelength. He compared his 

theoretical results with experimental measurements to verify that the radiation 

efficiencies of the unbaffled strips were much less than those of the baffled strips. 

Atalla, et. al. [1] predicted the acoustic radiation of an unbaffled, vibrating 

plate in light fluid. Their method was based on a variational formulation for the 

plate's displacement and the pressure jump through the structure. A Rayleigh- 

Ritz approximation with a polynomial set of trial functions was used for the 

displacement and surface pressures. Their investigation centered on the effect of 

the baffled vs unbaffled cases and showed that the effect of the baffle is very 
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important at low frequencies. Their results showed excellent agreement with 

experiment at low frequencies for a 20.0 X 24.8 X 0.63 inch plate. 

In this thesis, we use the method of superposition in which one computes 

the radiated sound power by dividing the surface of a known vibrating structure 

into elements and then replacing the vibrating surface with a number of 

equivalent sources. The basis functions for the numerical analysis are defined as 

the acoustic fields of discrete simple, dipole and tripole sources. These sources 

produce the equivalent volume velocity at the surface of the radiator. The 

velocity distribution over the surface of the body is then represented by a 

discrete set of volume velocities. 

1.3 Thesis Organization 

This thesis is divided into six chapters. Chapter one, an introductory 

chapter, provides an explanation of the motivation for the work and a brief 

review of related research. Chapter two is devoted to characterizing the 

theoretical and numerical models of the flat plate and provides background for 

the method of superposition which was used to predict the radiation efficiencies. 

In chapter three, a description of the experimental model and typical mechanical 

responses of the physical plate are given in detail. The fourth chapter describes 

the numerical experiments and the assumptions made in developing the 

numerical model. Chapter five gives a detailed comparison between the 



experimental model data and the numerical model results. Chapter six 

concludes the work presented and makes recommendations for applying this 

method to future studies. 



Chapter 2 

ANALYSIS 

2.1 Theoretical Model 

2.1.1 Classical Plate Theory 

In the analysis of structures, one frequently encounters structural 

components for which one dimension, e. g. the thickness h, is much smaller than 

the other dimensions, as shown in Figure 2.1. This type of structural component 

is called a plate. We will be primarily concerned with small lateral deflections of 

such thin plates subjected to lateral loads. The following assumptions are made 

about the plate: 1) the middle plane of the plate remains unstrained during 

bending, i. e. it is a neutral surface, 2) the effect of transverse shear strain is 

negligible, thus normals to the middle surface before deformation remain normal 

to the same surface after deformation, 3) normal stresses in a direction 

perpendicular to the plane of the plate are negligible, and 4) the plate material is 

homogeneous, isotropic, continuous and linearly elastic. 

As shown by McFarland [17], the governing partial differential equation 

defining the lateral deflection of the middle surface of the plate in terms of the 

applied transverse load is 



d*w    n   9*w      d*w _ p 
Ac* +   dx2dy2*!f~~D 
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(2.1) 

where w is the transverse deflection of the plate, D = Eh3/12(l-v2), the flexural 

rigidity, E is Young's modulus, h is the plate thickness, v is Poisson's ratio, and p 

is the transverse load. 

h = plate thickness 

middle surface of the plate 

is on the x-y plane 

Figure 2.1 Plate 



The stress distribution on the transverse faces of the element can be 

reduced to moments and forces per unit length in the x and y directions. These 

moments and forces are defined as stress resultants. The moments can be 

expressed as 

(n 
Mx=-D 

dy 
dx2 ■+v- 

d2w^ 

dy\ 

Mv=-D 
(   d2w    d2w^ 

(2.2) 

(2.3) 

Through the addition of equations 2.2 and 2.3, equation 2.1 can be reduced 

to two second-order partial differential equations 

f2* 
Mx+My=-D(} + v) 

d2w    d2w 

dx2 + dy2 , 
(2.4) 

and 

V2M = p (2.5) 

where V2 = and M = — 
M+M„ 

. If the boundary conditions and the 
dx2    dy2 l + v 

transverse load p are known, then equation 2.5 can be solved for M(x,y). 

Subsequently, equation 2.4 can be solved for w(x,y). 

A complete solution of the governing equation 2.1 depends upon the 

knowledge of the conditions of the plate at its boundaries in terms of the lateral 

deflection of the middle surface w(x,y). In the most general case, a twisting 

moment, a bending moment, and a transverse shear force act on each edge of the 



plate. An edge on which all three of these stress resultants vanish is defined as a 

"free edge". Two boundary conditions at each edge are sufficient for a complete 

solution of the governing equation. The boundary conditions on a free edge 

parallel to the x-axis at y=b are 

f      12...        S%...\ 
(2.6) My=-D 

f   d2w    d2w} 
v ■+- 

I   W     dy2)^ 
= 0 

and 

vn = -a v 
dy 

3,„  ~\ d'w 

' +(2-0)*"*^ 
= 0 (2.7) 

The boundary conditions on a free edge parallel to the y-axis at x=a are 

M=-D 
'd2w      d2w^ 

dx2 ■ + v- 
dy2 L 

= o (2.8) 

and 

a3- "»=-r^+(2-u)wL=° (2.9) 

A diagram of the stress resultants for a free edge is shown in Figure 2.2. 

The solution to the governing differential equation for a completely free 

plate can be obtained through the method of superposition as shown by Gorman 

[11}. Gorman superimposed the solutions of four plates each of which has a 

closed form solution to obtain the solution for the completely free plate. The 

solution which satisfies the governing differential equation and boundary 

conditions is 
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WOc,30 = X 
'smymy   smhßmy\ 

Hßm+rm)[*mrm    
sinh^ 

cosmÄt + (2.10) 

 fsinhywy   sinh/^y] 
ST* cosmTCt (2.11) 

where the first summation pertains to terms for which A.2 > (mrc)2 and the second 

summation pertains to terms for which A.2 < (mit)2, m represents all positive 

integers. 

Figure 2.2 Positive state of reduced stress resultants for free edges of a plate 
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2.1.2 Acoustic Background 

In many acoustic applications, the primary quantity used to characterize 

the noise levels generated by a vibrating structure is the radiated sound power. 

Radiated sound power is defined as the rate at which energy flows through a 

surface completely surrounding the structure which includes no other acoustic 

sources. The normal component of the surface compresses the adjacent fluid 

causing sound waves to radiate away from the surface. 

From an experimental perspective, it is difficult to measure accurately the 

surface pressure because of the influence of nearby surfaces which scatter the 

sound waves radiating from the structure. Often the enclosure and 

measurement devices modify the data. However, it is possible to calculate 

numerically the acoustic field of a vibrating structure submerged in an infinite 

fluid medium through the application of the Kirchhoff-Helmholtz equation to 

the surface pressures. One method for computing acoustic fields numerically 

based on the principle of wave superposition was used for the numerical 

predictions in this thesis and will be presented in summary here. 

A form of the Kirchhoff-Helmholtz equation can be written as 

p(x) = ^^ ff G{x I xs )v(xs) • nsdS(xs) (2.12) 
An  •» 

where p (x) represents the pressure at a point in the fluid, pc is the characteristic 

acoustic impedance, G (x/xs) is the Green's function representing the acoustic 
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field due to a source of unit amplitude, and v (xs)-n is the normal velocity of the 

vibrating structure. Equation 2.12 shows that the acoustic field is dependent 

only on the surface normal velocity of the vibrating structure and is not a 

function of the surface pressure. This form of the Kirchhoff-Helmholtz equation 

is well suited to deriving a lumped parameter model. 

The Green's function which is substituted into the Kirchhoff-Helmholtz 

equation is assumed to satisfy Neumann boundary conditions on the surface of 

the radiating body which can be written as 

VsG{x/xs)ns=0 <2.13) 

The Neumann condition specifies that the direct radiation from a simple source 

is scattered by the boundary surface as if the structure were rigid. 

The time averaged acoustic power output in terms of the pressure and 

normal velocity on any surface surrounding the vibrating structure which 

includes no other acoustic sources can be written as 

n„ = - JjRe{p(x)v * (x) ■ n}dS(x) (2.14) 
s 

If the surface in equation 2.14 is assumed to be the boundary surface of the 

vibrating body, an analytical expression for the power output can then be 

determined by substituting the pressure field given in equation 2.12 into 

equation 2.14 and simplifying the result. The time averaged acoustic power 

output can then be written as 
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Ylm=!SB£.\\^lm[G(x/xs)}v*(x)-nv(xs)-nsdS(xs)dS(x) (2.15) 

This result is important because it shows that the power output of the vibrating 

body depends only on the imaginary component of the Green's function which is 

non-singular. 

In a lumped parameter model, the quantities of interest are the average 

pressure and the volume velocity. One obtains the simplest form of the lumped 

parameter approximation by assuming that each of the elements vibrates as a 

piston, such that the surface velocity is constant over each element. The 

amplitude of the piston vibration is determined by requiring the piston to have 

the same volume velocity over each element as the specified boundary condition 

giving equation 2.16. 

"pton,v=7-jJv(^)M5(^) (2-16) 
SV   S., 

Substituting this expression into equation 2.15 gives the final result for the 

lumped parameter approximation for the power output as 

n.4iiv> (2-l7) 
2 ,,=1 u=i 

where 

9U = —JJ JJlm{G(jcM /xv)/k)dS(Xtl)dS(xv) (2.18) 

and <R0=k2pc/4K. 
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In the numerical implementation of equation 2.17, the volume velocities of 

each of the elements are ultimately replaced with basis functions, e.g., monopoles 

and dipoles that have source strengths equivalent to the volume velocity 

distributions. Tripole point sources, i.e. the combination of monopoles and 

dipoles, TM„ with source strengths, sM, were used as basis functions in this study. 

The source strengths are related to the volume velocities through the use of 

equation 2.19 

Jkpc_ü (2.19) 
"       4K   " 

The numerical program based on this method is referred to as POWER 

and can be examined in detail in reference [9]. The expression for the acoustic 

power used in the lumped parameter superposition method is written as 

n. =^-XXRe{/Vv*[7'v,(^ /xv) + iaVj;{xß I*„)•*,]} ("0) 

where 

4msß 

The source strengths, su, are determined by satisfying the boundary 

condition using volume velocity matching. The volume velocity matching 

scheme ensures that the approximate and exact solutions have the same average 

values over each of the elements. This allows the errors in the approximate 

solution to equalize as the waves propagate away from the surface of the 
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radiator. The basis functions, Tp, are the acoustic fields of a tripole source located 

at the element centroid. The relationship between the volume velocities and the 

unknown source strengths in matrix form is given by 

{s} = [U]-'{u} (2.22) 

where [U] is 

Up, = — f f VTM(^) • nds(x) (2.23) 
ikpc» 

In this study, the elemental volume velocities at each grid point, {u}, are 

calculated from structural finite element results by integrating the velocity over 

each element. By operating on {u} with [u]"1, the source strengths which match 

the volume velocities over each element are determined. Once these boundary 

conditions have been satisfied on the surface of the radiator, the acoustic power 

is calculated via equation 2.20. 

2.2 Numerical Model 

2.2.1 MSC/NASTRAN Plate Model 

The finite element model of the nickel-aluminum-bronze (NAB) plate 

consisted of 1000 MSC/NASTRAN CQUAD4 elements. The CQUAD4 element 

was first formulated by I. C. Taig and is described in Zienkiewicz [26]. The 

important characteristics of the element are that 1) the stresses and strains vary 
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within the element in a linear manner, 2) the four vertices of the element do not 

need to be coplanar and 3) the temperature is assumed constant over the 

element. Gaussian quadrature with a 4 x 4 grid is used to evaluate the stiffness 

matrix. The element geometry and coordinate system definitions are shown in 

Figure 2.3. 

/•tonwnt 

Figure 2.3 MSC/NASTRAN CQUAD4 element geometry 
and coordinate systems 
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A finite element model can be used to obtain modal information, e.g. 

mode shapes and frequencies, as well as dynamic response due to a prescribed 

forcing function. Figure 2.4 shows how the finite element model of the NAB 

plate was adjusted to correspond with the physical plate. First, the modal 

frequencies and geometries were matched, then the forcing function was 

adjusted. 

In a dynamic analysis for lightly damped structures, the bandwidth of the 

resonant peaks is the range between what is called the half-power points. The 

half power points are the two points on each side of the resonant peak which 

have a magnitude equal to 1/ V2 of the value of the resonance peak. Figure 2.5 

shows the half-power bandwidth. 
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Response 

Peak Response 

£# = Half-Power Point 
ä 

Half-Power Bandwidth 

Frequency 

o = Excitation Frequency 

Figure 2.5 Half power bandwidth 
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2.2.2 Moment Excitation from PZT Actuators 

To measure radiation efficiencies in the physical experiments, the NAB 

plate was excited with 2 PZT Quick Pack™ piezoelectric strain actuators which 

were mounted on the surface of the plate. Crawley and Luis [6] investigated the 

use of surface mounted piezoelectric actuators configured as piezoceramic strips. 

They made the assumption that the piezoelectric actuators could be represented 

as point forces and moments because the actuator mass was small relative to the 

total mass of the beam. They also assumed that all resonances of the actuator 

were higher than the beam's resonance frequencies of interest. 

The strains in the piezoelectric were assumed constant throughout its 

thickness, so that the strain compatibility of the actuator and the substructure 

was required only at the interface. A sharp rise in the shear stress exists at the 

end of the piezoelectric, indicating that the strain is transferred between the 

piezoelectric and the substructure over a small distance near the ends of the 

actuator. This force, applied at each end of the strip, can be shown as 

1 
EBtBb    (y/ + a) 

£B   +£B     ,   EB        £B    ~ 1 
yr + a 

(2.24) 
2 2 

where EB is the modulus ratio of the beam to the piezoelectric, tB is the beam 

thickness, b is the width of the beam, eB is the strain in the substructure at its left 

and right ends, x is the nondimensional piezoelectric centered coordinate, tjr is 

the effective stiffness ratio, a is the substructure equilibrium parameter, and A is 
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the piezoelectric strain (d31V/tc) where d31 is the piezoelectric constant and ^ is 

the thickness of the piezoelectric. If bending is being excited, the moment 

applied to the beam by these forces is equal to M0 = FtB. This shows that surface 

bonded piezoelectric actuators can be modeled as generating a moment at the 

ends of the PZT strips. 
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Chapters 

PHYSICAL EXPERIMENTS 

3.1 Introduction 

This chapter describes the physical model of the plate used in the 

experiment and explains the procedure for measuring its resonance frequencies, 

mode shapes and calculating its radiation efficiencies in one-third octave bands. 

The plate itself was a 10 X16 X 1.1 inch rectangular, flat plate made from a 

nickel-aluminum-bronze (NAB) alloy. The physical properties of the plate are 

shown in Table 3.1. 

Table 3.1 Material properties of the physical, unbaffled plate 

Young's modulus 16.0 x 106 psi 

Poisson's ratio 0.32 

density 0.276 lb/in3 
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3.2 Experimental Modal Analysis 

A modal analysis in air and in water was performed on the plate to 

determine its modal frequencies, mode shapes, and damping for comparison and 

validation of the finite element model. A schematic of the experimental 

apparatus for determining the vibration response and modal characteristics of 

the plate is shown in Figure 3.1. Each individual component is listed in Table 3.2. 

Table 3.2 List of equipment for experimental modal analysis of an unbaffled, 
rectangular, flat plate 

Facility ARL Reverberant Water Tank 

Model Type NAB flat plate 

Accelerometers PCB Model #W353 

Force Hammer PCB Model #7612 

ICP Signal Conditioner PCB 12-channel Model #483B07 

Spectrum Analyzer Spectral Dynamics SD380 

Computer Gateway 486DX PC 

Analysis Software SMS Starmodal, version 4.0 
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The plate was suspended from a crane by wires connected to screw-eyes 

on one end of the plate in order to simulate a free boundary condition on all four 

sides. The surface of the plate was discretized into an 11 by 17 grid for a total of 

187 grid points as shown in Figure 3.2. The plate was excited by a waterproof 

PCB force hammer with a plastic tip. The plastic tip was chosen to provide a unit 

impulse power spectrum with a spectral roll-off over a frequency span of 0-4000 

Hz. This ensured that enough energy was imparted to the system at low 

frequency while maintaining an adequate signal to noise ratio at 4000 Hz. 

The plate response was measured using a PCB W353 accelerometer. The 

modal testing was accomplished by using the method of reciprocity. The 

acceleration response of the structure was measured with a fixed accelerometer 

while each of the 187 grid points was excited with the roving force hammer. 

Transfer functions for each grid point were recorded in 5 Hz increments and 

processed by the SD380 spectrum analyzer in 5 Hz increments from 0 to 4000 Hz. 

Five impacts per grid point were used to calculate a root mean square average of 

the frequency response function (FRF). Each FRF measurement was transferred 

to Star Modal (a modal analysis software package) via IEEE interface from the 

spectrum analyzer. 

Once the transfer functions were obtained, the resonance frequencies for 

the plate were determined by examining the average transfer functions in Star 

Modal [22]. Narrow bands were selected to include the peaks of all of the 
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resonance frequencies. A rational fraction polynomial curve fit was determined 

within each selected band. Each fitted band was then incorporated into a 

complex, "synthesized" FRF. The poles of the complex FRF contained the modal 

loss factors and resonance frequencies while the residues provided the modal 

amplitudes. Figure 3.3 shows the experimentally determined loss factors. The 

modal parameters were then calculated which allowed mode shapes for each 

selected resonance frequency to be obtained. This procedure was repeated for 

the plate's in-water modes as well. Table 3.3 lists the resonance frequencies, 

mode shapes and loss factors for both the in-air and in-water experiments. 

Figures 3.4 to 3.6 show some representative mode shapes of the structure both in- 

air and in-water. 
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Table 3.3 Experimental resonance frequencies, modes shapes and loss factors 
of an unbaffled, rectangular, flat plate 

mode 

number 

mode(i,j) in-air frequency in-air 

loss factor 

in-water 

frequency 

in-water 

loss factor 

1 (14) 664 Hz «1 0.01 

2 (2,0) 697 Hz -0.0444 597 Hz 0.01 

3 (2,1) 1490 Hz -0.0007 1320 Hz 0.01 

4 (0,2) 1810 Hz 0.0017 1610 Hz 0.02 

5 

6 (1,2) 2270 Hz 0.0012 

7 (3,1) 2680 Hz 0.0014 

8 (2,2) 3130 Hz 0.0013 2840 Hz «1 

9 (4,0) 3680 Hz 0.0009 3280 Hz «1 
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Figure 3.1 Schematic of experimental set-up for modal analysis of an 
unbaffled, rectangular, flat plate 
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Figure 3.4 Experimental (2,1) mode in air, 1490 Hz 
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Figure 3.5 Experimental (1,2) mode in air, 2270 Hz 
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Figure 3.6 Experimental (2,1) mode in water, 1320 Hz 
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Figure 3.7 Experimental (4,0) mode in water, 3280 Hz 
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3.2 Experimental Radiation Efficiencies 

Radiation efficiency as defined by Fahy [10] is 

(T = ^— (3.1) 
pc0S <v2> 

where n defines the power radiated by the object, p is the density of the fluid, c0 

is the speed of sound in the fluid, S represents the surface area of the radiating 

object and <v2> designates the mean of the velocity squared, averaged over the 

radiating surface of the object. 

In practice, the radiation efficiency can be measured in a reverberant room 

(or water tank) using experimental techniques presented by Cremer, Heckl and 

Ungar [7] and Blake [3] and used by Weyer and Szwerc [23]. 

When measured in a reverberant room, the radiation efficiency is 

determined using 

aR=p0c0f2R(f)-L*?V± (3.2) 

where f is the frequency of interest, R(f) the frequency dependent room constant, 

Ap the radiating area of the structure, ^(f) the average sound pressure level in 

the room and <Daa(f) the surface averaged acceleration of the structure. 

The room constant, or sound absorption of a room is defined by Kinsler et. 

al. [13] as: 

55 2V 
*(/) = ^f- (3.3) 

Cjr 
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where V is the volume of the room in m3 and Tr the reverberation time in seconds 

The reverberation time is the time required for the sound pressure level in the 

room to drop 60 dB following the removal of a continuous sound source. The 

reverberation time is a function of the room surface area and the absorption of 

the room surfaces. Given the reverberation times, the radiation efficiency for the 

flat plate could be computed after the vibration and pressure fields were 

measured. 

The vibration field of the plate was determined using 15 accelerometer 

locations and the resulting pressure field in the reverberant tank was typically 

sampled at 3 to 5 locations using hydrophones. Figure 3.8 shows the 

experimental set-up for the measurement of radiation efficiencies. Accelerometer 

and hydrophone data were combined to compute an overall radiation efficiency 

for the plate using equation 3.2. Figure 3.9 shows the first group of fifteen 

accelerometer locations for the plate. These accelerometers were then removed 

and placed on the next fifteen grid point locations. The plate was excited using 2 

PZT Quick Pack™ strain actuators and a Quick Pack™ Power Amplifier. 

Before each run, the user of the data acquisition program specified the 

radiating area of the structure, the number of accelerometers and the number of 

hydrophones. At the end of each run, accelerometer, hydrophone and 

voltage/acceleration transfer function drive levels were gathered using 

LABVIEW [16]. LABVIEW was used to control the HP3561A analyzer via the 
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IEEE bus and to calculate the radiation efficiencies by the use of equation 3.2. 

Data were acquired in one third octave bands and the results were transferred 

from the analyzer to the control computer. Results stored for each run consisted 

of gains, sensitivities, the radiating area of the test object, individual 

accelerometer and hydrophone spectra, voltage/acceleration transfer functions 

of drive levels and a computed radiation efficiency. After specifying the correct 

transducer sensitivities and gains, the stored spectra were in engineering units. 

Figure 3.10 shows an example of one of the actuator voltage/acceleration vs. 

frequency transfer functions collected which was converted to velocity vs. 

frequency. The experimentally determined radiation efficiencies are shown in 

Table 3.4. 
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Table 3.4 Experimental radiation efficiencies of a nickel-aluminum-bronze 
unbaffled, flat plate submerged in water 

Frequency (Hz) Radiation Efficiency (dB) 

2000 -28 

2500 -27 

3150 -27 

4000 -18 

5000 -5 

6300 -13 

8000 -14 

10000 -14 
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Figure 3.8 Experimental set-up for the calculation of radiation efficiencies of an 
unbaffled, rectangular, flat plate submerged in water 
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Chapter 4 

NUMERICAL EXPERIMENTS 

4.1 Introduction 

This chapter describes the numerical model of the flat plate and explains 

the method for implementing the experimentally determined characteristics of 

the plate into the finite element model. A finite element model of the plate was 

generated in MSC/XL [20] by discretizing the face of the 10 x 16 x 1.1 inch plate 

into a grid of 25 by 40, two-dimensional quadrilateral elements. This mesh 

refinement was chosen based on MSC/NASTRAN's recommendation of eight to 

ten elements per half wave for dynamic analysis. This is to ensure that at the 

frequencies of interest, the mesh density captures the behavior of the structure 

accurately. 

The element selected was the MSC/NASTRAN CQUAD4. This is an 

isoparametric, membrane-bending element. The material properties of the finite 

element model are as shown in Table 4.1. 
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Table 4.1 Material properties of the finite element model of a 
nickel-aluminum-bronze, flat plate 

Young's Modulus 17.55 xl06psi 

Poisson's ratio 0.32 

density 0.276 lb/in3 

4.2 Numerical Modal Analysis 

The usual first step in performing a dynamic analysis is to determine the 

resonance frequencies and mode shapes of the structure. These results 

characterize the basic dynamic behavior of the structure and are an indication of 

how the structure will respond to dynamic loading. Computation of the 

resonance frequencies and mode shapes is performed by solving an eigenvalue 

problem. The description of the MSC/NASTRAN eigensolution method is given 

in detail in reference [18]. 

Free edge boundary conditions were imposed on the structure and a 

modal analysis in air and in water was performed. This analysis determined the 

plate's eigenvalues (resonance frequencies) and eigenvectors (mode shapes) for 

comparison with the experimental resonance frequencies and mode shapes. A 

list of the resonance frequencies and mode shapes is given in Table 4.2. The in- 
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water finite element model made use of MSC/NASTRAN's virtual fluid mass 

capability. The fluid is represented by a coupled mass matrix which is attached 

directly to the structural points. Both sides of the plate were defined as wetted 

structural elements. Figures 4.1 to 4.4 show representative mode shapes of the 

structure. 
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Figure 4.1 Numerical (0,2) mode in air, 1811 Hz 
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Table 4.2 Numerical in-air and in-water frequencies and modes shapes of an 
unbaffled, rectangular, flat plate 

mode number mode(i,j) in-air 
frequency (Hz) 

in-water 
frequency (Hz) 

1 (U) 661 584 

2 (2,0) 690 597 

3 (24) 1491 1333 

4 (0,2) 1811 1611 

5 (3,2) 1847 1642 

6 (1,2) 2265 2021 

7 (3,1) 268 2428 

8 (2,2) 3173 2886 

9 (4,0) 3504 3300 
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4.3 Numerical Radiation Efficiencies 

4.3.1 Verification of the Numerical Moment Excitation 

In the physical experiments, the plate was excited using two surface 

bonded piezoelectric actuators as described in Chapter two. Before numerical 

sound power calculations could be performed, the correct moment excitation of 

the plate needed to be determined for application to the dynamic model. 

First, a small sample of transfer functions from the experimental data were 

converted from voltage/acceleration to velocity through the use of equation 4.1. 

! (32.2%)(12%)      ! 
X = magnitude x —^— x ^ U— x — (4.1) 

O.lvolt g 2;rf 

Figure 4.5 shows how the moments are generated on the actual plate. These 

moments were applied on the finite element model at four grid points which 

corresponded with the location of the ends of the PZT strips on the physical 

plate. Using these moments as the forcing function, a frequency response 

analysis was conducted. Velocity output was requested at a grid point which 

corresponded with the same location on the experimental model for frequencies 

between 0 Hz and 4000 Hz. The numerical and corresponding experimental 

transfer functions were plotted. Frequency dependent damping was 

incorporated into the model so that the amplitudes of the resonant peaks of the 
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experimental and numerical transfer functions agreed as closely as possible. This 

process was repeated while alternately adjusting the moment excitation and 

damping until acceptable values for each of these were achieved. The 

experimental transfer functions were recorded only in the 0 to 4000 Hz range, so 

assumptions were made for the moment excitation values above 4000 Hz. 

Values of 15 in-lb were assumed for the moment excitation at higher frequencies 

for use in the sound power calculations. The values of the calculated moments in 

each frequency range are listed in Table 4.3. Figure 4.6 is a plot of the 

numerically generated velocity vs. frequency transfer function up to 4000 Hz. 

Table 4.3 Frequency dependent moment excitation of the finite element model 
of an unbaffled, rectangular, flat plate 

frequency range (Hz) moment (in-lb) 

0 to 1000 15 

1000 to 2150 5 

2150 to 4000 25 
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unbaffled, rectangular, flat plate 



49 

0.1 

0.01 

0.001 

1*05 - 

1*06 

« 

A 

^ / 

"a 

\J 
A 

Ott)1000 Hz 
1000 to 2200 Hz 
2200 to 4000 HZ 

500     1000     1500     2000 

frequency (Hz) 

2500 3000 3500 4000 

Figure 4.6 Numerically determined transfer function at grid point 406 of an 
unbaffled, rectangular, flat plate 



50 

4.3.2 Sound Power Calculations 

Frequency response analysis is a method used to compute structural 

response to steady-state oscillatory excitation. Before sound power calculations 

could be performed on the structure, a frequency response analysis needed to be 

carried out to extract the displacements (volume velocities) of the plate. The 

finite element model incorporated the half-power points as described in Chapter 

two into each frequency response analysis. The excitation was the frequency 

dependent moment determined from measurements as described in Chapter 

five.. These moment excitations were used in three separate frequency response 

analyses: from 1000 Hz to 2150 Hz, from 2150 Hz to 4000 Hz and from 4000 Hz to 

10000 Hz. 

The volume velocities computed from displacements from each frequency 

response analysis were used as input to the POWER code. These displacements 

at each resonance frequency as well as the two half power points on each side of 

the resonance frequency were requested. The radiated sound power output was 

divided into one third octave frequency bands as shown in Table 4.4. After the 

completion of all three analyses, the power output in watts was then averaged 

for each of the eight one third octave center frequencies. Radiation efficiencies 

were then calculated through the use of equation 3.1 and converted to decibels. 

Table 4.5 lists the numerical radiation efficiencies for each one-third octave band 

from 2 to 8 KHz. 
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Table 4.4 One third octave frequency bands for sound power calculations of an 
unbaffled, rectangular, flat plate submerged in water 

lower band limit (Hz) 

1788 

center frequency (Hz) 

2239 

2818 

3548 

4467 

2000 

2500 

3150 

upper band limit (Hz) 

2239 

2818 

3548 

4000 

5000 

5623 

7079 

6300 

8000 

4467 

5623 

7079 

8913 

Table 4.5 Numerical radiation efficiencies of an unbaffled, rectangular, flat 
plate submerged in water 

center frequency (Hz) radiation efficiency (dB) 

2000 -32 

2500 -26 

3150 -27 

4000 -17 

5000 -19 

6000 -12 

8000 -13 
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Chapter 5 

COMPARISON AND DISCUSSION OF MEASURED AND COMPUTED 
RESULTS 

This chapter describes the comparisons of the experimental and the finite 

element results. The first step in these studies was to conduct a modal analysis in 

order to check the validity of the model. This was essential to conclude whether 

the same model could be used with confidence to calculate radiation efficiencies. 

Once the mesh refinement of the finite element model was accepted, the 

calculated mode shapes and their corresponding frequencies were compared to 

the experimental mode shapes and frequencies in air and in water. Then, the 

radiation efficiencies in water of the numerical and physical models were 

compared. 

The modal analysis from 0 Hz to 8000 Hz was carried out and the highest 

order mode shapes were examined to determine the acceptability of the mesh 

refinement. MSC/NASTRAN recommends 8 to 10 elements per half wave for 

dynamic analysis. In order to be as computationally efficient for all segments of 

these analyses, eight elements per half wave were deemed sufficient at the 

highest frequencies. 
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The mode shapes were determined to match very well, however the 

numerical frequencies were too low. There were two possible approaches for 

increasing the frequencies of the numerical model so that they corresponded 

more closely to the experiments: either to remove mass by decreasing the density 

of the material or to add stiffness by altering the Young's modulus. Arbitrarily, 

the decision was made to alter the Young's modulus of the finite element model 

until there was very good agreement between the frequencies of both models. 

The actual Young's modulus of NAB is E = 16.0 x 10s psi. The Young's modulus 

of the finite element model was changed to E = 17.55 x 10s psi, which represents a 

9% alteration. 

The mechanical damping implemented in the finite element model for 

modal analysis was the experimentally determined loss factors; the loss factors 

were used for both the "in-air" and "in-water" modal analyses. Their values 

were shown previously in Table 3.3. Table 5.1 shows the comparison between 

the mode shapes and frequencies of the in-air and in-water modal analyses. The 

experimental analysis was unable to detect some of the mode shapes which were 

apparent in the finite element modal analysis which is due to the placement of 

the PZT strips. At times, it was difficult for the strips to excite some of the 

longitudinal bending modes because the PZT strips act in shear, not normal to 

the surface of the plate. Figures 5.1 to 5.4 show that the mode shapes of the two 

models in both water and air correspond remarkably well. If the mode shapes of 
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the two models had not shown good agreement, the subsequent volume 

velocities could not have been used to obtain reasonable values of the radiation 

efficiencies of the actual plate. This is due to the dependence of the radiation 

efficiency on the velocity of the structure as shown in equation 3.1. Because the 

volume velocities are determined from the net volume displacements of the 

structure, even small differences in the mode shapes can lead to large differences 

in radiation efficiency. 

Table 5.1 Comparison between calculated and measured mode shapes and 
natural frequencies for completely free, nickel-aluminum-bronze plate. 

mode shape 
experimental 

in-air 
(Hz) 

finite element 
in-air 
(Hz) 

experimental 
in-water 

(Hz) 

finite element 
in water 

(Hz) 
(U) 664 661 583 

(2,0) 697 690 597 597 

(2,1) 1490 1491 1320 1333 

(0,2) 1810 1811 1610 1611 

(3,2) 1847 1642 

(1,2) 2270 2265 2021 

(3,1) 2680 2682 2428 

(2,2) 3130 3173 2840 2886 

(4,0) 3680 3504 3280 3300 
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Figure 5.1 Experimental (1,1) mode, 664 Hz (top) vs. 
numerical (1,1) mode, 661 Hz (bottom) in air 
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Figure 5.2 Experimental (0,2) mode, 1810 Hz (top) vs. 
numerical (0,2) mode, 1811 Hz (bottom) in air 
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Figure 5.3 Experimental (2,0) mode, 597 Hz (top) vs. 
numerical (2,0) mode, 597 Hz (bottom) in water 
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Figure 5.4 Experimental (2,2) mode, 2840 Hz (top) vs. 
numerical (2,2) mode, 2886 Hz (bottom) in water 
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Once the finite element model was determined to predict accurately the 

vibration responses of the physical model, as indicated by the modal analyses, a 

frequency response analysis was conducted to ascertain the moment excitation 

from the piezoelectric actuators. An iterative process was used to determine the 

best possible match between the transfer functions of the numerical and physical 

models. 

First, the magnitude of the moment excitation was increased in the 

numerical model until the floor of the numerical transfer function reached the 

same level as the experimental transfer function. After a number of iterations, it 

was decided to divide the frequency response analysis into three separate 

frequency ranges as previously described in Chapter four. This is required 

because the moment excitation is frequency dependent. The selection of the 

three frequency ranges was chosen so that the floor of the transfer function 

matched for each frequency range. 

After the determination of the moment excitation was completed, the 

mechanical damping was adjusted through a similar iterative process so that the 

amplitudes of the resonant peaks corresponded as closely as possible. Table 5.2 

shows the comparison of the experimental and numerical loss factors which were 

used. Figure 5.5 shows a comparison between the numerically generated and 

experimentally generated transfer functions. 
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Table 5.2 Comparison between loss factors of nickel-aluminum-bronze 
plate submerged in water 

experimental 
frequency 

(Hz) 

numerical 
frequency 

(Hz) 

experimental 

in-water 

numerical 

in-water 
584 0.0 

597 597 0.01 0.0 

1320 1333 0.01 0.02 

1610 1611 0.02 0.01 

1642 0.01 

2030 2021 0.02 0.05 

2420 2428 0.01 0.01 

2840 2886 0.02 0.01 

3280 3300 0.02 0.02 

3540 3504 «1 0.005 

3890 3930 «1 0.04 
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Figure 5.5 Comparison between experimental and numerical transfer functions 
of an unbaffled, rectangular, flat plate 
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Neither the experimental damping nor the experimental transfer functions 

were measured above 4000 Hz, therefore assumptions were made for these 

numerical values. X] was assigned a value of 0.01 for frequencies between 4000 

Hz and 10000 Hz and the moment excitation was chosen to be 15 in-lb in this 

same frequency range. After satisfactory moments and damping were chosen, 

the three separate frequency response analyses were executed. The half power 

points of the natural frequencies were included so as not to miss the resonant 

peaks. 

The displacements from these analyses were then used as input to the 

POWER code. The power output in watts was averaged for each of the eight, 

one third octave center frequencies before the radiation efficiency was calculated. 

The assumption is made that all of the sound power is dominated by the 

contributions from the resonance frequencies of the structure. A plot of the 

comparison between the experimental results and the numerically predicted 

radiation efficiencies is shown in Figure 5.6; their values are listed in Table 5.3. 

The match in radiation efficiencies is impressive. The predictions in six of 

the eight one third octave frequency bands are well within acceptable ranges of 

experimental or numerical error (e.g. ± 3 dB). The reason for the difference in the 

5000 Hz center frequency is not known. Because the experimental radiation 

efficiency is so much higher than all of the other values, it is possible that there 

was an experimental error 
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Table 5.3 Comparison between radiation efficiencies of an unbaffled, 
rectangular, flat plate submerged in water 

center frequency 
(Hz) 

experimental 
a 

numerical 
a 

AdB 

2000 -29 -32 -3 

2500 -28 -26 +2 

3150 -28 -27 +1 

4000 -18 -17 +1 

5000 -5 -19 -14 

6000 -13 -12 +1 

8000 -14 -13 +1 
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frequency (Hz) 

6000 7000 8000 

Figure 5.6 Comparison between experimental and numerical Q of an 
unbaffled, rectangular, flat plate submerged in water 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

A method for modeling the sound power radiated by a vibrating structure 

has been demonstrated. The structure selected was an unbaffled, rectangular, 

flat plate. The results of the numerical model were compared with data collected 

from an actual plate excited with piezoceramic actuators. This technique 

employed can be summarized as follows: 

1. Experimental data was generated to provide a basis for comparison of 

the numerically generated data. The experimental data consisted of mode 

shapes and their corresponding frequencies, actuator voltage/acceleration 

transfer functions, mechanical loss factors and one third octave radiation 

efficiencies. 

2. Adjusted material properties and the mechanical damping from the 

experimental measurements were incorporated into the finite element 

model. The results of the modal analysis were vised and adjustments were 

made of the material properties in the numerical model so that the 

resonance frequencies and mode shapes corresponded to the physical 

experiments. 
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3. A numerical frequency response analysis was executed which generated 

plate surface transfer functions. These transfer functions were compared 

with the experimentally recorded actuator voltage/acceleration levels. 

This method was devised to ascertain the frequency dependent moment 

excitation of the PZT strips. 

4. Separation into three separate but contiguous frequency response 

analyses using the appropriate mechanical damping and moment 

excitations was carried out to allow the extraction of the displacements 

(volume velocities) at each grid point for use in the acoustic radiation 

program. 

5. These displacements were used to calculate the radiation efficiencies of 

the plate. Verification was based on the comparison of these results with 

the experimentally determined radiation efficiencies. 

This procedure can be used to predict radiated sound power for other 

structures made from Nickel-Aluminum-Bronze by choosing the mechanical 

damping and material properties to be the same as those determined in this 

work. It is recommended that the structures be excited by the same type of 

piezoceramic actuators so that the same procedure used here can be used to 

determine the frequency dependent moment excitations. This avoids the added 

mass problems inherent in the more commonly used electro-mechanical shakers. 
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This comparison study shows that this method for numerically computing 

the sound power radiated by a vibrating structure produces results that show 

remarkable agreement with those generated experimentally. The 

implementation of the method is quite straightforward and differs from previous 

acoustic boundary element methods in the way the boundary condition is 

enforced, i.e. it uses a volume velocity matching approach. 

We intend to continue this work by implementing this procedure for other 

rectangular plates made from aluminum 7076 and stainless steel 316. The same 

method will be used to determine the mechanical damping and material 

properties to produce numerical results that correlate with the experimental 

data. We will measure the mechanical damping and the actuator 

voltage/acceleration transfer functions in the physical experiments to 

frequencies above 8 Khz to verify the correct moment excitation. The finite 

element mesh refinement will also be chosen with the intent to calculate one 

third octave radiation efficiencies above 8 KHz. 
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